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ASTRACT

Decision making is defined in terms of four elements: the set

vf decisions, the set of outcomes for eaehi decision, a set-?alued 7riter1.r

function, the decision maker's value judgement for each outcome. Vart> AL

confidence structures are defined, which give the decision maker's confi-

dence of a given decision leading to partAcular outcome. The r '1ti.

of certain confidence structures to Bayesian decision making and tc

membership functions in fuzzy set theory Is established. A number cf

schemes are discussed for arriving at '"best" decisions, wid some ntow

types f domination st:ructures- are introduced.

It



We consider the process of decision sking to be composed of four

elements:

i) the set of all feasible alternatives (decisions) X with elements

denoted by x ,- resulting izn

ii) tJe set of all possible outcome.3 Y(x) C R for each feasible

alternative x C X , measured by

iii) the criterion function f(.) : xt- Y(x) , a set-valued function

that measures the "value" of a decision, and f'inally

iv) the decision maker's "value judgement" or "preference" for each

outcome.

The totality of all possible outcomes is

Y =,U {Y(x) I xE x) C

The coordinates in Rm may be used for indexing quantitative or qualitative

(linguistic) outcomes.

To illustrate these concepts we consider a simple investment problem

(SIP). The decision maker wishes to invest his savings $M so that he may be

well off in the future. Here, X includes all possible stock purchases

including deposits in banks. Of course, X may be not well defined. In fact,

generating "good" alternatives (elements of X ) is a very important ingredient

of the decision process. Let us suppose that the decision maker uses two

criteria, "growth rate of asset value" and "safety" to measure the desirability

of an investment (other criteria such as liquidity are important but we shall

not consider them here for the sake of simplicity). Note that, depending on

the economic situation, the outcomes of the decisions may be highly unpredict-

able. For instance, buying stock may yield a high growth rate of asset value



and grieat Atety in a bullish maket, and-, quite the opposite in a be I-, .e.

The set of all possible outcomes of a 4 cision x tf bu a eerta.r ' , c

(measired fn terms of growth rate of asset value indT r0ty) if,. . .-

Once each Y(z) is specified, the set eontalnir.P &l possible o'It" Y-'. ,

i's known.

The decision aiker's value judgement of each lteent y f y riiv t, ,

not simple. Various witys of forming such value Judgenrents has boen prrp- j
e.&., preference or utility construction, domination structures, etc.

Subsequently we shall classify value Judgement in terms of single 'r ult '"rle

criteria.

-enceforth we shall assume that the decision- set X and the crite-

rion fcn=tion f(')are specified. We shall focus our attenticn o r two que'stions:

How can one define the outcones of a decision, and what are methods ,' vai'ie

Judgement -for arriving at a food decision?

In .iome of the literature (fur In:tance, that quote1 in [ O21J)

uncertainty of outcome is treatedf, in torms eof a priori prooahiIity

distributio:ns. Usually a single criterion is employed to define the ,utc.mo

of a decision. For many complex decision problems, uncertainty of outcoe

cannot be aiequately i-epresented by an a priori distribution. In the next

section we shall introduce the concept of confidence structures for the Txir-

pose of treating uncertatnty. It will be shown that this concept is ciostly

related to Bayesian a Tiriori probability distribution and to Z-seh's member-

ship function. In S'ection 3, we shall exhibit some methods for attaining

good decisions with a.- variety of confidence rtructures and a mnter -,I'

representations of value judgement or preferenne. In 'Section 4 , we shil)

present, a hieraro"iy of general decision processes.
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Recall here that, given a decision x 6 X , the set of possible

o0ti1ouest is denoted by Y(x) . Of course, Y(x) depends on the decision

maker's prior belief. Loosely stated, a confidence structure is a collection

of information or prior beliefs which specifies, for each feasible decision

x G X , a set of prior probability measures for each outcome y e Y(x) to

be the outcome of x .

To help the intuitive understanding of confidence structure, we

give first a definition for the case of Y(x) consisting of discrete points

only.

n De nition 2. Z. Suppose that, gftn any x G X , Y(x) consiets

-f discrete points only. Let I denote the set of aZZ no-empty

aubintervaZ8 (inoluding .:'o?.ated points) of the interval [0,I].

A confidence structure over XC (the set of all feasible decisions)

an~d Y -U {Y(x) I x 6 Y,, 'a set that includes aZl possible

outomes of all feasibie decisions) is a set-vaZued function

X X Y ] I

We interpret c(x,y) aja,bJ6E1 , x 6X , y 6Y , tonman that the

decision maker hat confidene in term of prior probability f ovm "a" to "b"

chat y w'iZl ooau if he makes decision x . The intemal [a,b] is

called the gonsd~oe inteftat for y to be the outcome of x

That is, outcomes whose probability of occurence is non-zero.

tt Since Y may include points in outcome space which are not possible due

to a given decision x , one must allow zero probability.



MMq 21. s34pose the deAsion maker ,beieves that his makin, a decision

1 2Ix will result in only two possible outcoms, y and y . with proba-

bilities in (M.2,0.61 and (O.4,0.-7] , respectively. Then ont can specify

C(*') , wbere

(0.2,0.61 If y -y

c(x y) - (0.4,0.T) If y yrJ {(01 otherwise

Here, Y(x) ,y (y 2 ).

Nov suppose that Y is an arbitrary, not -hecesdarily countable, s lbset

)f Rn. Prior- probability is -not as readily specified as in Definition ,.1;

however, the conceot of probability measure appears to be useful ', even though

the intuitive meahing of confidence strcture-m be not as apphuent.

Definition 2.2. Let V be a collection of subsets of Y , and let I

be the set of all non-e-npty subintervaZ. (intluding isolated points)

of the inte:al -vl] . A confienoe structure over X and V is

a set to act-valued ftnmctioh

e(.,.) : x -. J

We interpit C(x,U) u a~b] E J , x IE X ;U C- V ,to Medi 1hiat

thMe d ( siion maker has confiden e in tcra of prior piobabitity

fP.m "a" to "b" that the outcome of a'eision x will be in

Oet U .

Remar 2.1. Definition ?.2 is very genera. To be mathematieall;y

wanageable, set V mav have to have structure such as a a-algebrd

- r !.reL measurability. With this specification, 'br decision x fixed,

a probability mnasure P(.) : V -p (o,i] saoisfying P(U) E C(x,U) for

all U E V can represent ,i confidence structure for fixed x . Thus a

confidence ztrurture induces, tor each x E X , a class of probability
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measures which iescribe the decision maker's belief in the .- atccmes of

his decision; for fUrther discmasgln see Example 2.4. From the point

of view of Information content, the saller the confidence irte.-vals

C(x,U) , U E , and the maller the set V , the better.

Since we allow zero aeasure, we ca extend Y to em , and ve

c*A we the concept of probability distribution fumction to define con-

fiMnce struaturec.

DOEWnL;.~ Lt j ibwte thme aet of all mn-apy ead'i'tevale

(incltudinsg isolated point.) of thme interval [o.,iJ A cofidenae

etr"jou' ia a set-valued fiution

C(.,) : X 1P *3

Weinte pe t C(x y )- [a,]E ,xEX,yE E , to mean thatthe

decisioni maker has cnfibonoe in term'w of prior pr'obability die tributi(*w

P"o i "a" to "b" that decision x will result in an outcome not

exoseding y ; that is,

Prob ~{e FP y'y)J (a,b

R mrk, 2.2. Definitions 2.2 and 2.3, hile defining confidence structures

in terms of probability meaure, are cumberson for purposes of application.

To alleviate this we introduce the following convention.

Convention 2.1. Let r be the set of all non-ewpty aubintervals (in-

oZding isolated points) of the non-negative real half-line. A confidence

strueture over X and Y is a set-valued function

c(.,.) : xx Y 4 Y

euoh that, for each x E X , if y E Y(x) is an isolated pointt with

reepect to Y(x) then c(x,y) is a subintervaZ of [0,i] that

That is, there is a neighborhood N of y such that N n Y(x) = {y}



speeifie the Paws of the prior pr'obbility that y is the outcomi

of x . and if y is not an isoZated point with respect to Y(x)

then c(x,.y) is an interval of [(O.-m that specifies the range ofI

tOa probaW* density that y is the outxme of x.

Ae,-A 2.1. Suppose that Y C R and one of the coordinate axes is

used for indexing qualitative (linguistic) outcome. Then the proba-

bil-ity density in Convention 2.1 is defined on a one-dimencional

space. In general, if k e (0,l,...,m-l) axes are used for indexing

qualitative outcomes* then the density fimction is defined on m-k

dimensional space.

Exople 2.2. In the SIP, fl() and f 2 ( . ) are the criterfc i Functions

for "growth rate of asset value" and "safety", respectively. Thus, the

higher their values, the better. Table i gives a Det of choices, X

outcomes, Y(x) , and confidence interval9 (in conformity with Convention

2.1). This is also illustrated in Figure 1. This example will be used

repeatedly hereafter.

Choice x Outcome set Y(Yi Confidence interval c(xy)

x {Y1Iy-yl 1 <0.6) ['l/2(l+ly-y 1) , -/(I+1y-y 11)]

{yl ly-yll>0.6} (0)

where y (1.1,0.9)

2 2 (o.4,0.5) (0.9,1]

22 (1.6,1.2) [o,0.05)

ly * {y21 ,y2 o}

3 3x y- (1-.05,1) {1)

Y + y 3  '{O)

TkBLE 1, EXAMPLE 2.2
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f2Y ((

0 f2W

FIGuTE 1-, EXAMPLE 2.2

An important specl-al case of confidence structures, and the one

usually considered, is the one for which c(x,y) is exactly one point

of [6,1] , so that it maps X X Y -* [0,1] . To distinguish this from

-.ht general case we state

Dfinition 2.4. A confidence structure c(, ) il be called point-

valued 4ff, for' each (x,y) E X X Y , it contains ezaotly one point of

[0,1] . It will be deotad by M(.,.) : X x Y -o. [o,1]

c(x,Y) - (N(iy)J V(x,Y) 6 X x Y

Exwle 2.3. In the deterministic case, given any decision x°0 X

there is one and only one outcome yO Y . Then

te)i e y
c~x~ 1{#(o otherwise
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and 1Y otherwise

Example 2.3. Suppose that each decision x 6 X results in outcomes which

depend on the occurrence of mutually exclusive and collectively exhaustive

events {E1,E 2 ,...,Eq); e.g., in the SIP, E1 may indicate a bullish

market, E a bear" h one, etc. Let P be the prior probability for E 9

i a 1,2,...,q , to occur. Let yi(x) denote the outcome of decision x

when event E occurs. Th-n we can give the confidence structure as

{P i if y U y (x) p i - 192,...,q
(xy) ((0) -otherwise

or, in terms of M(.,.) i

M(X.,y) a i i x ,9.s

x0 otherwise

More generally, M(x,e) : Y 4 [0,1] can be a probability density

function for y E Y to be the outcome of x 6 X .

If one considers the value (or loss) of y to be a given function

V(--) : Y - [0,.) (or L(,) : Y - [0,-)) , then the Ba yes decision is the one

that maximizes I Pi V(y 1 (x)) (or minimizes IPi L(yi(x))) over X

i=l iml

For the continuous case, the summation is replaced by integration; see

Section 3. ?.

Example 2.5. Suppose that all possible outcomes are qualitatively

(linguisticall) described; e.g., in the SIP, the set of all possible out-

comes can be: "very high return and very high risk", "very high return and

mediu rd", "high return and very high risk", etc. Then Y can be an

index set of outcomes. That is, with each y 6 Y there is associated



a qualitative (linguistic) outcome. low suppose that cC',-) is point-

vAlued so that the cauma relation betveen x and y is represente4 by

M(.,.) : X X Y + [0,1] ; that is, M(x,y) represents a prior belief that

y will be the outcome of x . Nov suppose that y is fixed, say

y a y 0  Y . Then M(',Y) : X [0,l] can be viewed as a membership

faction in the sense of Zadeh [1-2] ; that is, M(xy 0 ) gives the

degree of membership ,of decision x in the qualitatively (linguistically)

0described outcome y . Conversely, given a fusy set one can construct a

point-valued confidence structure.

In practice it may not be easy to specify c(xy) as a pointa.

but it may be less difficult to specify it as a subinterval of [0,11 ;

see Sections 3 and 4.

Rema 2.4. In the Bayesian case (Example 2.4), the confidence structure

is represented by a family cf prior probability distributions, one for

each decisicn x E X . In the Zadeh case (Example 2.5), it is represented

by a set of membership functions, one for each y t Y . The membership

functions are not probability distributions, the sum of the degrees of

membership of a decision x need not equal one.

Next we consider a process of converting a general confidence

structure to a point-valued one.

Definition L.LD [3. The prinoiple of insufficient reason is: If one is

ooyetely ignorant to which event mong a set of possible events will

take plae., then one am behave as if they are equaZly,;ike y to ocur.

If one applies the principle of insufficient reason to confidence

structures, then the complexity of decision is greatly reduced, Ribeit at

the possible risk of obtaining a poor decision. Then each a - v,(x,y) i:n

equally likely to be the true probability of x resulting in y . Thus,
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it' C(xy) = [a,b] , then the expected value of one's 'onfidence i:n

a + b ; that is. one uses the expected value of the probability as a

representation for c(x,y) . More precisely, if c(x,y) = ra,b] , then

M(x,y) = a is used as a representation for c(x,y) ; of course,2

M(e,e)Y is a poirit-valued confidence structure. While M(x,.) : Y- [0,i]

need not be a probability distribution, it can be normalized into one by

dividing M(-xy) by the sum (or integral) of M(x,y) over Y(x) , provide

it is defined; see Example 2.4.

Example 2.6. (Continuation of Example 2.2). We shall apply the principle

of insufficient reason to the confidence structure given in Table 1.

1
For x = x we have then

M~x V) 3/4(1l+y-y 1 1) if y-y I <o.6
M(x 0y) = otherwise

Letting

C j 1iiyyl) dyu -n '.6

Y(xl)

so that M(x, ") Y(x1 ) -0 [0,1] given by

M(x ,y) =3/ 0o(ly-y11)

is a probability distribution.

In similar fashion, upon applying the principle of insufficient

reason, one obtains

0.95 if y 2

?(x ,Y) = 0.025 if Y - y22

0 otherwise

and, after normalization,



21f 0.95/0.9T5 If y,. y

?4(x ,y) L'0500 X, Z

0 otherwise

To simplify OUR' nomenclature we state

Definitim- 2.6 TheU pvooee of ornezting a Veneml oon fiden ce atvium

into a point-vatued mne by nwow~ of* thle pvtnotple of ineufftasent reaon,.

iwtuding nozwaisat~. 8 will be cajied the reduotion prow....

3. DECIION MI&GWITH COMI7;M ML STUCI J
In this section we describe some methods for decision making

with a variety of confidence structures. As mentioned before, the process

of decision making depends not only on the confidence structures for the
outcomes, but also on the "value Judgement" or "preference" for the out-

comes. We classify the situation according to these two elements and

describe some methods for decision making. We bein with the simplest

cule

3.1. Dterministic Confidence Strct ues.

In the deterministic case, each decision results in a unique

outcome; e.g., see Example 2.3. Thus we can use a function

f() :X-)Y

to define the relation between decisions and outcomes.

Value judgement may involve a single (scalar)criterion or

a multiple (vector) criterion (multicriteria).

3.1,1. Detgrainigtric Contideneg Structure with a Single Criterion.

Here the possible outoome set Y is a subset of one-dimensional

Euclidean space. The points of Y may be arranged according to a preference

ordering or, in the case of qualitative (linguistic) outcomes, Y may be

merely an index set. In either case, we shall suppose there is a real-valued
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function

u(-) : Y-+R

such that

u(y1 ) > u(y
2 ) iff yl is preferred to y2

1 2 1 2
u(yl) = u(y ) i"ff y is indifferent to y

If Y is already arranged in ,'cord w1%th a preference ordering, then u(9)

can be the identify map.

With function u(s) so specified, decision making becomes a

standard optimization problem : max (u o f(x)].
X

Generalizing u(.) to a total ordering over Y is feasible;

e.,., see 4- .51

3.1.2. Deterministic Confidence Structure-witb. a Multiple. Criterion.

Here the possible cutcome set Y Is a subset of m - dimen,;ional

E-clidean space with critericn function f(.) : X - Y C Rn , m > 1 . Some

of the coordinates axes, that is some components of f(.) , may' be used as

indices for quolitative (linguistic) oitcomes.

Decision problems involving multicriteria are common, in prrd-tice.

For example, in the SIP the decision maker is concerned with growth rate

of asset value, safety, and probably others such as liquidity. In problems

of national energy planning, decision makers are subject to consideration

of self-sufficiency, cost ofenergy generation, unemployment, growth, etc.

Many solution concepts have been suggested for making decisions

with multicriteria. rome of these are outlined below; for a survey, see

[6,'] . 'Except for (i) and (i) of the listed methods, some monotoni-

city according to preference is assumed for each component f.(.) of f(.)

including the case for which an f.(.) indexes a qualitative outcome. For

example, in the OIP, f 1(.) may assume values in an index set {l,2,...,5}
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with 1 representing "ary high growth rate", 2 "above average growth rate",

3 "avereage growth rate", 4 "belov average growth rate", ad 5 "very low

gr owth rate."

() One-dimensionail omarlson. )Here, the aulticriteria problem is

converted into a single criterion one. -In this category are

goal progruming (8,9] , the additive weight method, compromise

solutions [10,1i , Utility construction [1], and lexico-

grphic ordering.

(U) Ordin, and rakina. Instead of defining a real-valued function

over Y as in (i) , one defines a binary reliition which my be

a partial ordering over Y . Then one seeks the aatximtm or

minisau elements over Y . provided such exist. Among such

methods are Pareto-optimality, efficient solutions, 'outraiiking

relations [12] , and preference ordering '[4,5]

() Domination structurs and nondonated solutions. Here, for

each y E Y , one defines a set of domination factors D(y)

such that, iff yo 0 y and yo 6 y + D(y) , then yo is

dominated by y . An outcome that is not dominated by any

other outcome is nondominated, and the final decision Is to

result in nondoanated ones. For a detailed discussion, In-

cluding the relation to (i) and ( s) , s .16,13',i,19.

(iv) Satieficina models. In this approach, the decision maker

establishes first either

(1) a minimal "satisfaction" level for each criterion,

or

(2) an upper "goal achievement" level for each criterion.

In the first case, a decision resulting in any criterion not



meeting or exceeding the minima] satisfaction level is un-

acceptable and ruled out as a candidate for a final decisim.

In the second case, any decision that results in all criteria

meeting or exceeding the upper goal achievement level is

acceptable for a final decis:on;

(v) Iterative or adaptive procedures. In these methods, a final

decision is obtained in a sequence of steps. In one such

,method, at each step one considers the (remaining) feasible

decisions and their outcomes, and eliminates the dominated

ones from further consideration. A final decision is selected

from among those which cannot be eliminated by this process

[61 . In another method, one begins with a particular feasible

decision and then finds a "better" one at each step until

improvement becomEs impossible., Such a technique, similar to

a gradient search, is described in [151' .

Some of the methods listed above can be combined in solving a

particular decision problem. For instance, a combination of (i) '.nd

(iv) may result in a mathematical programming or an optimal control

problem.

3.2. Point-Valued Confidence Structures.

If the conridence structure is not deterministic, decision making is

more complex. In this section we consider decision making with point-valued

confidence structures'; e.g., see Examples 2.4 and 2.5.

3.-. Point-Valued Confidence Structure with a Single Criterion.

As in Section 3.1.1, we consider . real-valued function u(,) : .

such that u(yI) > u(y 2) 0 yi is preferred to y2
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We shall suppose that the following are defined for each

x E X (recall Convention 2.1):

I(x) u u(Y) M(x,y) + f u(y) M(xoy) dy (1)
Y YE !l(x) Y2(x)

U V(x) E ( [U(y) - Z(x)]2 (x,y)

+16)u().- Z(x)]2 1(x9y) dy (2)

vhere

Y1(x) a (y E Y(x) :f y 'is an isolated point v.r.t. Y(x)) (3)

Y (z) a (y 4E Y(x) y is not an isolated point v.t.t. Y(x)) (4)

if M(x,.) is a probability measure , ,hen E(x) and V(x) are

the expected value and variance, respectively, ,of u(s) with respect td

K(x,")

The following decision optimization methods may be useful:

() Maximisation of expected vlue. Here one seeks x* E X such that

E(x#) * E(x) for all x E X . Suppose that u(.) is "convex

line6a" in term of lotteries. That is, if y0 _ al + ( 2) y2

a e [0,1] , represents an outcome with chance a to have :outcome

yl and (.-a) to have outcome y2 , then u(yI) * u~y) (-)

u(y ) . In this event, maximizing the expected value seems logically

sound. Unfortunately, such a utility function is difficult to find.

(U) TO criteria for value judgement. Here we treat E(x) and V(x)

as two criteria for value Judgement in decision making. Since V(x)

is the variance of u(I) , it Wy be regarded as a measure of

"fluctuation" or "risk." Such a two criteria formulation has been

used extensively in portfolio analysis [16] . Of course, the

That is, the total measure of Npx,') over Y(x) is one. Recall that,

by Convention 2.1, M(x,.) on Y1 (x) is a prior probability, vhereas on
Y2(x) it is a probability density.



methods listed in SeclM{n 3.1.2 are applicable here. Note that a

non-deterministic single criterion problem has ieen converted into

a deterministic two criteria one,.

(.) Chance constraint formulation. Let

Y - y E Y u(y) > y)

x(S,y) {xE X M(x,y)+ M (x,y) d y > 8)
yE Y (X) n Y 1'(x) y

where Y (x) and Y2 o(x) are defined in (1) and (4), respectively.

Loosely speaking, X(3,y) ts the set of feasible decisions

. whose final outcome in terms of u(s) h-scprobability of at least

8 of exceeding a specified level y . With y and 8 specified,

the chance constraint formulation is that of maximizing E(x) over

X(O,y) ; e.g., see [17] . This formulation combines the features

of expected value maxlmization with those of a satisficing model,,

Again, combining two methods such as (UL) and (iii) is possi'le.

3.2.2. Point-Valued Confidence with a Multiple uriterion.

If outcomes are specified in terms of a multiple criterion with a

point-valued confidence structure, decision making is more difficult than in

the casele criterion with a deterministic confidence structute

(Section 3.1.2), or in the case of a single criterion with point- Valued con-

fidence structure (Section 3.2.1). While itmay be possible to ombine the

methods of Section 3.1.2 and 3.2.1, the success of so doing will depend on

the skill of the decision maker. Here we merely list some possibilities.

(Z) Suppose the problem can be converted into a single criterion

one as in (W) of Section 3.i.?. Then it is a singole criterion

problem witn point-valued confidence structure and the mzth d:

of 2ection 3.2.1 apply.
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(ii) Suppose the problem cmnot be converted into a single criterion

one. Then one can introduce a smiple utility function for each

outaome component. Xnel y, if a higher outcome value is preferred

to a lovr one, let ui(y) a y a fi(x) p i a 1,2,...,m. Then

one proceeds as In- Section 3.2.1 by forming expected values and

variances,

11() ~T x)Ui(y) NX.zY) +. (U 1 (y) M(z.Y) dy (5)

Vi(x) a l(x) ui(y) - 3il )]2 W(x.,)

_ _ zi(x)J2 k(j) dy(6
+ + [yt()- t (6)

where Y(x)' and Y2(x) are defined by (3) and (14), respectively.

Thus, by doubling the number of criteia, one converts a

problem with point-valued confidence structure into one with deter-

ministic structure as in (U) of Section 3.2.1. Of course, ono can

also convert the prdbWm into an a-criteria one with a chance con-

straints as in (4U) of- Section 3.2.1. In either case, the problem

is reduced to one of aulticriteria with deterministic confidence

structure, so that the aethods of Section 3.1.2 become applicable.

In the reainder of this section v describe a nev type of

nondominated decisions (that isi decisions resulting in nondoinated

outcomes) for problems vith point-valued confidence structures.

(AU) As discussed in (U) of'Section 3.1.2, given yl and y2 in y ,

iff y2 E y' + D(yl) then y2 minated by y' . Now, given

decisions x1  and x2 in X with possible outcome sets Y(x1 ) and

Y(x2 ) . respectively, it f f 1 4; D() for all y1 e Y(x 1 ) and
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y 2 E Y(x2 ) then x is dominated by x1 . Loosely speaking,

decision x2 is dominated by decision id if every possible out-

come of x2 is dominated by every possible outcome of k2 . In

Figure 2, Y(x 1 ) and a constant domination cone D(y) are given.

Decision x2 is dominated by x1 if (x2 ) is contained in

region B, whereas x1  is dominated by x 2 if y(] 2 ) is contained

in region A.

Y2

DCyT + YJ

Figure 2, Domnation Structure

The above definition of domination my be too restrictive. -To

make the concept less restrictive, let us introduce the following

kind of domination. For each x E X , E [0,] , E [0,) , let

Y'(x) a (y Y 2(x) I N(x,y) -' 0) (8)
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where YI(X) and Y2(x) are given by (3) and (4), respectively.t

Loosely speaking, YINX) [YO(x)] is the set of all outcomes of

decision x having probability [probability density] equal to or

greater than a [B] . Now, given a and B ., and a domination

structure D(e) yF+ D(y) C Rm , x E X is dominated by x e X

with respect to (a,8,D(*)) iff y2 6 y1 + D(y1 ) for all

2 2 82 ad 1  0 1 ( 8Y Y1 (I?) UY (z ) an YC_ , Y (x)

A nondominated decision is -one which is not domineted by any other

feasible decision. Roughly speaking, the domination reiation is

defined over those outcomes which have high enough probability of

resulting from the decisions considered.

ExmDle 2.1. Let M(x ,y) , i a 1,2, be as given in Example 2.6.

Let aa 0.05 and 8 0.24 . Then Yl(x ) = Y(x2) 0 , and

Y -(x) a(y y ' y 1- , < 0.61

2y 1I(x 2 ) a (y2.1}

Fig ,'e 3 shows YO(x1 ) and, Ym(x2) together with a constant

domination cone, :D(y)

t Recall Convention 2.1.
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Y2

22
Y1By

7,21

. \

D(y) Y

Figure 3, EiAmple 3.1

For the given domination cone D(y) , decision x2 is dominated by

x , 'so that x is nondominated.

If ' = 0.01 and B = 0.4 , then Y(X 2) = 21 y22

2 1 2
x is not.iominated by x , nor is x dominated by x . Thus

both decisions are nondominated in this case.

In general, the larger a and B are, the smaller is the set

of nondominated decisions. If a and B are too large, Yl(x) and

Y2(x) may be empty and the domination relation ceases to be

meaningful.



3.3 Geeral- Confidence2Structures.

Recall Convention 2.1 for general confidence structures and

Definition 2.6 for the reduction process of converting a general confidence

structure into a point-valued one.,

3.3.1. General Confidence Structure with a Single Criterion.

In this case one can convert the general confidence structure into

a point-valued one by the reduction process discussed in Section 2. Thereafter

the methods of Section 2.3.1 are applicable.

There is one special case that is somewhat "equivalent" to a multi-

criteria problem with deterministic confidence structure., This case is charac-

terized by the, fact that the number of possible outcomes of each decisiou is

finite and fixed.. For example 'n the SIP, if-asset value is the only concern,

the outcomes of each decision may depend either on a bearish market or a bullish

one. Thus the possible outcomes of each decision may be represented by a pair

of real numbers. In general, if the outcomes of each decisirn x depend on

m possible situations, then they may be represented by m real-numbers

'f 1 (x),.... ,f m(x)) . Now let Ii be an interval of [0,i] indicating the

confidence that the i-th situation will occur. More precisely, let the confi-

dence structure be given by
c~Iy - ri  if fikx)

{0) otherwise

Now let Xi-( X 16(6lI. ) and

m,- E R" I ,i Ii , 'i -- l}

i1"
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Thus each A E i represents a prior probability that is consistent with the

confidence structure because each A E . Note that, given a A E Q , theI m

expected value of outcome for a given decision x is X A. fi(x) . Maximiza-
1 1

tion of expected value over X is equivalent to maximizing the value of additive

weight function A • f(x) with A G Q . Let A = (c X I a > 0, A E } and

-A =,{d E FP I d • A < 0A E ; hence, A* is the polar-cone of A .

From [6,13] it is seen that the confidence structu e induces a domination

structure such that int A* C D(y) for all yE Y where Y = {f(x) I x E X)

As shown in [6,13] , the advantage of using domination structures is that good

candidates are not disregarded when Y does not possess suitable cone-convexity.

3.3.2. Genera Confidence Structure with a Multiple Criterion.

This is the most general as well as the most common decision problem.

It may be possible first to convert the multicriteria problem into one with a

single criterion, and then tc apply the methods of Section 3.3.1. It may ai:so

be possible to use the reduction process of converting a general confidence

structure into a point-valued one, and then to apply the methods of Section

3.2.2. A combination of these steps may be possible depending on the parti-

cular problem.

Another method may be an extension of that of (Z) of Section 3.

Let a(x,y) and b(x,y) denote the greatest lower bound and the least upper

bound, respectively, of confidence interval 2(x,y) . Analogously to (7) and

(8) define

YM(x) = {y 6 Yl(x) I P(a(x,y) , b(x,y)) > a) (0)

Y2(x) = {y E Y2 (x) I' :P(a(x,y) , b(x,y)) (10)
2

where P(.,.) : R 2 - . For instance, if one applies the principle of

insufficient reason,
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P(a(x,y) , b(x,y)) = [(x,y) + b(xy)]

or one may let

P(a(xy) , b(x,y)) = b(x,y)

Now we introduce the following value judgement. Given P(-,') a ,--

and a domination structure D(i) , x 2 G X is dominated by x X with respect

2 1o a1 2 C (2) pi 2 ~2)ao (D..,a ,(-)) iff y E1y+ D(y ) foarnl Y )

The proper specification of P(',') , ,8and D(e) i-s clearly

of great importance and remains a subject for further investigation.

4. HIERARCHY OF DECISION PROCESSES.

In view of the discussion of Section 3, it appears reasonable to

set up a hierarchy of decision processes. After feasible decision set X

is specified, a decision problem is characterized by its confidence structure

and by the value judgement of the outcomes. The process begins at the most

common starting point, multicriteria with a general confidence structure, and

ends with doption of a final decision. During the process, consecutive

simplification of confidence strutture and value judgement takes place.

Table 2 shows the direction of simplification as indicated by the arrow.
/
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Multicriteria _ Single Criterion

General Start

Point-Valued

Deterministic Finish

Table 2, Decision Process

5. CONCLUSION

The concept of confidence structure has been introduced into decision

making, problems. Various concepts and techniques for simplifying and solving

such problems have been discussed, and a hierarchy of decision processes has

been outlined.
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